Electro Chemistry Part-III

- According to Nernst equation the potential of single electrode depends upon

 The nature of the electrode
 Temperature
 - 3) Concentration of the ion with respect to which it is reversible
 - 4) All the above
- 2. The Nernst equation giving dependence of potential of metal electrode on concentration is

1)
$$E = E^0 + \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[M]}{[M^{n+2}]}$$

2)
$$E = E^0 + \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[\text{M}^{n+1}]}{[\text{M}]}$$

3)
$$E = E^0 - \frac{2.303 \text{ RT}}{\text{nF}} \log \frac{[\text{M}^{n+}]}{[\text{M}]}$$

4)
$$E = E^0 - \frac{2.303 \text{ RT}}{\text{nF}} \log [M^{n+}]$$

3. Consider the following four electrodes

$$A = Cu^{2+} (0.002M) / Cu_{(s)}$$
$$B = Cu^{2+} (0.2 M) / Cu_{(s)}$$
$$C = Cu^{2+} (0.03 M) / Cu_{(s)}$$
$$D = Cu^{2+} (0.004 M) / Cu_{(s)}$$

If the standard reduction potential of $Cu^{2+} / Cu_{(S)}$ is +0.34V, the reduction potentials (in volts) of the above electrodes follow the order 1) A > D > C > B 2) B > C > D > A 3) C > D > B > A 4) A > B > C > DHint: In case of metal electrodes, the reduction potential decrease with decrease in concentration of metal ion. 4. The Nernst equation for the reduction potential of a non metal A when [Aⁿ⁻]
 = C is given by

1)
$$E^{0} + \frac{0.059}{n} \log C$$

3) $E^{0} + \frac{0.059}{n} \log C^{n}$
4) $E^{0} - \frac{0.059}{n} \log \frac{1}{C}$

5. The e.m.f. of the following Daniell cell at 298 K is E₁ Zn
/ZnSO₄(0.01M)//CuSO₄ (1.0M)/Cu When the concentration of ZnSO₄ is 1.0 M and that of CuSO₄ is 0.01 M, the e.m.f. changed to E2. What is the relationship between E₁ and E₂?

1)
$$E_1 > E_2$$
 2) $E_1 < E_2$ 3) $E_1 = E_2$ 4) $E_1 = 10 E_2$

Hint; Cell reaction is $Zn(s)+Cu^{+2} \rightleftharpoons Zn^{+2} + Cu(s)$, $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$

$$E_1 = E_{cell}^0 - \frac{0.059}{2} \log \frac{0.01}{1} = E_{cell}^0 + 0.059 \text{ and } E_2 = E_{cell}^0 - \frac{0.059}{2} \log \frac{1}{0.01} = E_{cell}^0 - 0.059$$

 $\therefore E_1 > E_2$

6. For the cell Zn/Zn^{2+/}Cu^{2+/}Cu, if the concentration of Zn²⁺ and Cu²⁺ ions is doubled, the emf of the cell

1) Doubles (2) Reduces to half 3) Remains same 4) Remains zero

Hint; Cell reaction is $Zn(s)+Cu^{+2} \rightleftharpoons Zn^{+2} + Cu(s)$, $E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$

If concentration of both ions is doubled, the ratio remains unchanged.

7. In a cell that utilises the reaction

 $Zn_{(s)} + 2H_{(aq)} + \rightleftharpoons Zn^{2+}_{(aq)} + H_{2(g)}$ addition of H_2SO_4 to cathode compartment, will

1) Lower the E and shift equilibrium to the left.

- 2) Increase the E and shift equilibrium to the left.
- 3) Increase the E and shift equilibrium to the right.
- 4) Lower the E and shift equilibrium to the right.

Hint;
$$E_{cell} = E_{cell}^0 - \frac{0.059}{n} \log \frac{\left\lfloor Zn^{2+} \right\rfloor}{\left\lfloor H^+ \right\rfloor^2}$$
 due to addition of acid, [H⁺] increase i.e cell

potential will increase and equilibrium state shifts to the right

- 8. For a cell reaction, Cu²⁺(C₁, aq)+Zn_(s) ≒Zn²⁺(C₂, aq)+ Cu_(s)of an electro chemical cell, the change in standard free energy (△G^o), at a given temperature is
 - 1) log C₁ 2) $\frac{0.0591}{2}$ log $\frac{C_2}{C_1}$ 3) log C₂ 4) log(C₁ + C₂)
- 9. The relationship between standard reduction potential of a cell and equilibrium constant is shown by
 - 1) $E^{0}_{cell} = \frac{n}{0.059} \log K_{c}$ 2) $E^{0}_{cell} = \frac{0.059}{n} \log K_{c}$ 3) $E^{0}_{cell} = 0.059 \text{ n} \log K_{c}$ 4) $E^{0}_{cell} = \frac{\log K_{c}}{n}$
- 10. For a spontaneous reaction the ∆G, equilibrium constant (K) and E⁰_{cell} will be respectively
 1) -ve, >1, +ve
 2) -ve, >1, -ve
- 11. For the cell representation Pt /H₂(1atm) / H⁺_(aq) // Cl⁻_(aq) /AgCl/Ag , K_c

(equilibrium constant) is represented as

1)
$$K_{c} = \frac{\left[H^{+}\right]\left[H_{2}\right]}{\left[Cl^{-}\right]\left[AgCl\right]}$$
2)
$$K_{c} = \frac{\left[Cl^{-}\right]\left[AgCl\right]}{\left[H^{+}\right]\left[H_{2}\right]}$$
3)
$$K_{c} = \left[H^{+}\right]\left[Cl^{-}\right]$$
4)
$$K_{c} = \frac{\left[H_{2}\right]}{\left[Ag\right]}$$

Hint: cell reaction is $\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} \Leftrightarrow H^+_{aq} + Cl^-_{aq}$,

12. The relationship between free energy and electrode potential is

1)
$$\Delta G = -nEF$$
 2) $\Delta G = nEF$ 3) $\Delta G = \frac{EF}{n}$ 4) $\Delta G = \frac{n}{EF}$

13. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_C is

- 1) $\Delta G^{\circ} = RT \ln K_{c}$ 2) $\Delta G^{\circ} = -RT \ln K_{C}$
- 3) $\Delta G = RT \ln K_C$ 4) $\Delta G = RT \ln K_C$
- 14. E^0 for $F_2 + 2e^- \rightarrow 2F^-$ is 2.8 V then E^0 for 1/2 $F_2 + e^- \rightarrow F^-$ is

1) 2.8 V 2) 1.4 V 3) -2.8 V 4) -1.4 V

Hint; E0 is independent of stoichiometry of the equation.

15. The standard reduction potentials for the two half-cell reactions are given below

$$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s); E^{0} = -0.40V$$

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s); E^{0} = 0.80V$

The standard free energy change for the reaction $2Ag^+(aq) + Cd_{(s)} \rightarrow 2Ag_{(s)}$

+
$$Cd^{2+}$$
 (aq) is given by

Hint: $E^o = E^o{}_{Ag} - E^o{}_{Cd} := 0.80 - (-0.40) = 1.2v$

 ΔG° =-nE⁰F= -2x 1.2x 96500J= -231600J = -231.6 KJ

16. What is the reduction potential of half-cell consisting of zinc electrode in 0.01

M ZnSO₄ solution at 25^{0} C (E_{0X}⁰ = 0.76 V)

1) -0.819 V 2) +0.819 V 3) - 0.701 V 4) +0.701 V

Hint; $E_{rp}^{0} = -0.76 \text{ V}$, for metal electrode $E_{RP} = E^{0} + 0.059/n \log [Zn^{+2}]$

$$E_{RP}$$
= -0.76+0.059/2 log [10⁻²] =-0.76 -0.059 =-0.819v

17. The standard e.m.f. for the cell reaction, $2Cu^+_{(aq)} \rightleftharpoons Cu_{(s)} + Cu^{2+}_{(aq)}$ is +0.59V at 298 K. The equilibrium constant of the reaction is 1) 1×10^{10} 2) 1×10^{12} 3) 2×10^{12} 4) 2×10^{6}

Hint: E0cell =
$$\frac{0.059}{n} \log K_c$$
, n=1, log K= 0.59/0.059=10 K=10¹⁰

18. The standard e.m.f. of a galvanic cell involving cell reaction with n = 2 is found to be 0.295 V at 25⁰C. The equilibrium constant of the reaction would be

1)
$$1.0 \times 10^{10}$$
 2) 2.0×10^{11} 3) 4.0×10^{12} 4) 1.0×10^{2}
Hint; $E^{0}_{cell} = \frac{0.059}{n} \log K_{c}$ n=1

- **19.** During the charging of a lead storage battery, the reaction occurring at the cathode is represented by
 - 1) $Pb \rightarrow Pb^{+2} + 2\bar{e}$
 - 2) $Pb^{+2} + 2e \rightarrow Pb$
 - 3) $Pb^{+2} + SO_4^{-2} \rightarrow PbSO_4$
 - 4) $PbSO_4 + 2H_2O \rightarrow PbO_2 + 4H + SO_4^{-2} + 2\bar{e}$
- 20. A depolariser used in dry cell is
 - 1) NH_4Cl 2) MnO_2 3) K_2O 4) Na_3PO_4
- 21. When lead storage battery is charged
 - 1) Lead dioxide dissolves 2) H_2SO_4 is regenerated
 - 3) The lead electrode becomes coated 4) Amount of H_2SO_4 decreases
- 22. In a dry cell, the reaction which takes place at the zinc anode is

1) $Zn^{+2} + 2e^{-} \rightarrow Zn$ 2) $Zn \rightarrow Zn^{+2} + 2e^{-}$ 3) $Mn^{+2} + 2e^{-} \rightarrow Mn$ 4) $Mn \rightarrow Mn^{+2} + 2e^{-}$

- 23. The cell which cannot be recharged is
 - 1) Fuel cell2) Solar Cell3) Primary Cell4) Secondary cell

24.	When a lead storage battery is discharged, then				
	1) SO_2 is evolved	2) Lead is formed			
	3) Lead sulphate is consumed	4) Sulphuric acid is consumed			
25	A fuel cell is				
	1) The voltaic cells in which continuous supply of fuels are sent at anode to give				
	oxidation.				
	2) The voltaic cell in which fuels such as CH_4 , H_2 , CO are used up at anode.				
	3) $H_2 - O_2$ fuel cell involves the reaction	Anode: $2H_2 + 4OH^- \rightarrow 4H_2O_{(l)} + 4e^-$			
		Cathode: $O_2 + 2H_2O_{(l)} + 4e \rightarrow 4OH^-$			
	4) All the above.	, O'			
26.	In which of the following will the corrosion of iron be most rapid				
	1) In pure water	2) In pure O ₂			
	3) In air & moisture	4) In air & saline water			
27.	The composition of rust is				
	1) $Fe_2O_3 xH_2 O$ 2) $Fe_2O_3 6H_2 O$	3) $Fe_2O_3 2H_2 O$ 4) Fe_2O_3			
28.	With respect to $H_2 - O_2$ fuel cell the false statement is				
	1) It is free from pollution 2) It is more efficient than ordinary galvanic cells				
	3) The reaction at anode is 4) These cells take little time to go into operation				
29.	Which of the following metals act as a sacrificial anode for iron objects?				
	1) Cu 2) Zn	3) Ag 4) Sn			
30.	Hydrogen - Oxygen cells are used in space craft's to supply				
	1) Power for heat & light	2) Power for pressure			
	3) Oxygen	4) All the above			
31.	Zn is used to protect corrosion of iron because				
	1) E_{oxi} of $Zn < E_{oxi}$ of Fe	2) E_{red} of $Zn < E_{red}$ of Fe			
	3) Zn is cheaper than Fe	4) Zn is abundantly available			

reactions are

1) Fe is oxidised to Fe^{+2} & dissolved oxygen in water is reduced to OH^{-1} 2) Fe is oxidised to Fe⁺³ & H₂O is reduced to O_2^{-2} 3) Fe is oxidised to Fe⁺² & H₂O is reduced to O_2^{-1} 4) Fe is oxidised to Fe^{+2} & H₂O is reduced to O₂ **48**. The correct statement of Leclanche cell 2) $MnO_2 + C$ act as cathode 1) It has amalgamated zinc as anode 3) 20 % NH₄Cl is electrolyte 4) All the above The cathode reaction of dry cell is **49**. 1) $Zn \rightarrow Zn^{+2} + 2e^{-1}$ 2) $MnO_2 + NH_4^+ + e \rightarrow MnO(OH) + NH_3$ 3) $Zn^{+2} + 2\overline{e} \rightarrow Zn$ 4) $MnO_2 \rightarrow 4H^+ + 2e^- \rightarrow Mn^{+2} + 2H_2O$ 50. The voltage of dry cell is 1) 2.0 v 3) 1.0 v 4) 1.25 v 2) 1.5 v 51 The incorrect statement of dry cell is 1) MnO₂ acts as cathodic depolarizer & facilitates the H⁺ ion discharge by removing the absorbed H – atoms. 2) Zn^{+2} ions absorb NH₃ formed in the reaction. 3) It cannot be recharged. 4) It contains liquid state electrolyte. When lead accumulator is discharged 52. 1) Anode reaction is oxidation of PbO₂ to Pb^{+2} . 2) Cathode reaction is reduction of Pb^{+2} to Pb. 3) H_2SO_4 is consumed. 4) H_2SO_4 is formed. 53. The incorrect statement of lead accumulator is 1) The voltage varies between 1.88v to 2.15v. 2) 40 % H₂SO₄ electrolyte gives a voltage 2.15 v.

	3) 5 % H_2SO_4 electrolyte gives a voltage 2.0 v.				
	4) The net cell reaction with 2 moles of PbSO ₄ formation involves 2 faradays.				
54.	Which cannot be an oxidant in a fuel cell?				
	1) O ₂	2) H ₂ O ₂	3) HCHO	4) HNO ₃	
55.	Which of the following are used as electrodes in a fuel cell?				
	1) Porous PVC or 7	Teflon coated with Ag	2) Nickel boride & F	Raney Ni	
	3) Pt		4) All of these	$\sim 0^{\circ}$	
56	A fuel cell operates at 125°C. It is an example of				
	1) Low temperature	e cell			
	2) Medium tempera	ature cell			
	3) High temperatur	e cell			
	4) None		CO		
57	The theoretical efficiency of a fuel cell is				
	1) 70%	2) 90%	3) 100%	4) 60%	
		.0			
58.	Which of the following metals corrosion does not liberate H_2 gas?				
	1) Fe	2) Sn	3) Zn	4) Cu	
	NNN.				

KEY

